技術解説

材料複合学からみた耐摩耗性材料の組織

Consideration of Wear Resistant Material from the Point of View of Composite Theory 九州大学大学院工学研究院 材料工学部門

博士(工学) 宮原 広郁 Hirofumi Miyahara

1. はじめに

圧延を目的としたロール材は、鋼材を高品質かつ 高精度で加工成形させることを目的として開発さ れてきたが^{1,2)}、それは表面を白銑部(チル部)、内 部をネズミ銑部に制御したチルドロールに始まり、 製造プロセス開発と共に構成組織も大きく変化し てきた(Fig.1)。グレン鋳鉄ロールはチルドロール が持つ共晶セメンタイトと基地組織に片状黒鉛を 分散させた組織を持つ鋳鉄系ロール材であり、さら に高合金グレン鋳鉄(ニハード鋳鉄)組織は 4~ 8%Niを含みマルテンサイト基地に改質したもので ある。また球状黒鉛を分布させたダクタイルロール も用いられ、このようなロールは黒鉛による圧延時 の肌荒れ向上および焼付防止を目的とした組織設 計と考えられる。

Fig.1 Development of roll materials.

一方、アダマイトロール材は鋳鋼と鋳鉄の中間の組 織で、高炭素オーステナイト生地に共晶セメンタイ トが分散した組織を有しており、その後、強い白銑 化傾向を有する Cr の添加により M₃C、M₇C₃、 M₂₃C₆等の炭化物を分布させた高クロム鋳鉄³⁾、さ らに 1980 年後半には、VI_A属元素(W、Mo等)、 V_A属元素(V等)の MC, M₂C 炭化物 4を分布さ せたハイス系ロールが研究開発され、マルテンサイ ト基地に2次炭化物が微細に分布した基地組織へ 制御することにより強度、耐摩耗性、耐熱性を兼ね 備えた高品質ロールが製造されている。ここでは、 ロール材を始めとする耐摩耗性材料についてマト リックス相(母相)と強化相(硬質分散相)の複合 組織を、高合金鋳鉄やセラミックス分散アルミニウ ム合金等の組織を用いて各構成相の効果や役割に ついて組織学的に検討してみた。

教授

2. 複合則

複合材料の設計において、複合化プロセスと共に 複合後の性質の予測は重要である。最も単純な形状 として Fig.2(a)に示すモデルによる引張強さを考え ると、Fig.3 に示すように強化相が破断されない歪 の領域では金属(σ_1 *)と強化相(σ_2)から予測さ れる特性の向上が期待される。しかしながら、マト リックス金属は大きく歪むことに対し、強化相単独 では大きな歪に耐えられず、小さな歪で破断するこ とから、破断後の引張強さは Fig.3(b)の金属単体の 強さ(σ_1)からも低い値となる。

Fig.2 Array of hard phase,(a)parallel-type, (b)series-type, (c)short-fiber-type

Table1 Simple mixture rule of stress, young's modulus and thermal expansion between metal and ceramics.

maximum stress	
Parallel-type	
$\sigma = \sigma_3 = \sigma_1^* V_1 + \sigma_2 V_2$	(before breakdown)
$\sigma = \sigma_4 = \sigma_1 V_1$	(after breakdown)
Series-type	
$\sigma = \sigma_1$	
Young's modulus	
Parallel-type	
$E = E_1 V_1 + E_2 V_2$	
Series-type	
$1/E = V_1 / E_1 + V_2 / E_2$	
Thermal expansion coefficient	
Parallel-type	
$\alpha = \alpha_1 (1 - \theta_2) + \alpha_2 \theta_2$	
where, $\theta_2 = E_2 V_2 / (E_1 V_1 + E_2 V_2)$	
Series-type	
$\alpha = \alpha_1 V_1 + \alpha_2 V_2$	

Table 2 Estimation of stress and Young's modulus of fibrous hard phase reinforced metal matrix composites.

Fig.3 は強化相の体積割合の増加に対して、最大引 張強さが直線的に向上しているが、一般に用いられ る複合材料 (Fig.2(a),(b))の特性に関する複合則は、 Table 1 に示すように直線または曲線で向上するこ とが多い。なお、実際の組織は Fig.2(c)のように強 化相は短繊維状または粒子状で分布することが一 般的であるので、その複合則は Table 2 に示される 式となり、特性改善への強化相の効果の見積もりを 低く設定する必要がある。また、圧縮強さや硬さに 関してもマトリックス合金の特性に影響されるこ とが予想され、適正な推測が重要と考えられる。

3. 強化相の特性向上

ロール材組織を構成する炭化物の種類としては、 まとめられた報告があるが、例えば Fig.4 に示され るように C と結合力の強い元素との組み合わせが 多く、特にハイス系ロールで設計される元素は第 IVA族~VIA族が多い⁵⁾。強化相は MC や M₂C 型の 高い硬さを持つ炭化物相を積極的に用いるが、Fig. 4 (薄灰色) に示すように MC 炭化物の硬さが比較 的高く、続いて M₂C (灰色)、その他の構造(濃灰 色)の順で低くなっている。なお、炭化物だけでは なく、炭窒化物を用いて改善を試みた報告もある⁶⁾。

Fig.4 Vickers hardness of carbides.

MC 炭化物の形状は粒状や花弁状のものが多く みられるが、M7C3 などは熱流方向に成長した板状 のものも多い。炭化物が独立に分布するかネットワ ーク上に分布するかによりマトリックスへの応力 伝達が異なるため、圧縮強度や耐摩耗性に影響を及 ぼすと考えられる。一般にロールはころがり摩耗を 主として受けると考えられるが、アブレッシブ摩耗 に対するセラミックス配列の影響について報告さ れており ⁷、Fig.5 に示すように、連続アルミナ繊 維を摩擦面に対して垂直よりもやや傾いた繊維方 向が最も抵抗力が高いとされている。最適な耐摩耗 特性を得るためには、表面における摩擦や応力分布 を解析し、炭化物の配列が可能であれば制御する必 要があると考えられる。

Fig.5 Influence of orientation of alumina fiber on wear resistance of alumina / Al-4.43mass%Cu alloy composite. Fibers are distributed parallel of sliding direction from left to right in sample (a).

4. マトリックス相の特性向上

マトリックス相は Fig.3 にも示したように、強化 相の体積割合が低い場合は複合材料全体の特性に 大きく影響すると考えられる。チルドロールにおい てもすでにベイナイトまたはマルテンサイト基地 に制御されており、ハイス系ロールでも複数回の焼 入れ焼戻し処理を行うことによりマルテンサイト 組織に調整することが一般的となっている。Fig.6 は Fe-1.7~2.3%C-5%Cr-5%Mo-5%V 合金の焼入れ 処理におけるマルテンサイト割合を示したもので ある 6。なお割合は全体から残留オーステナイト引 いて換算した。1200K 近傍がほぼマルテンサイト になっているのに対し、1373K 近傍からの焼入れ では 50~90%は残留オーステナイトが分布してい る Fig.7 は Fig.6 の(A)および(B)試料について2回 の焼戻し処理を行った際の硬さとマルテンサイト 量の変化について示したものであるが、高合金鋳鉄 の場合は焼入れでマルテンサイト相とするよりは 初回は残留オーステナイト相とし、複数回の熱処理 によりマルテンサイトと2次炭化物の混合組織に 制御することによりより高い硬さを得ている。

Fig.6 Influence of quenching temperature on the matrix microstructure for Fe⁻ $1.7 \sim 2.3\%$ C⁻ 5%Cr⁻ 5%Mo⁻ 5%V alloy.

Fig.7 Vickers hardness and ratio of martensite at several tempering temperature, (A) and (B) are quenched sample of Fig. 6.

熱処理によるマトリックス相の組織制御として は、2次炭化物だけでなく、N添加による改善も試 みられており、Nの添加は C と同様にマトリック スの硬さや組織に影響を及ぼすこと、Fig.8 に示す ように、マトリックス組織内における2次化合物と みられる窒化物の分布によりわずかではあるが改 善効果も見られている⁶。また、Al-Si-Cu 合金試料 ではあるが、熱処理および冷却中において、熱膨張 係数の違いから Al₂O₃強化相および Si 相近傍のマ トリックス相に転位が多く発生し(Fig.9),時効硬 化を加速させることも示されている⁸。マトリック ス相は強化相を保持するともに強化相にかかる応 力を連続的に緩和する必要があり、強化相との界面 結合性や周囲の組織も含めた複合材料の熱処理設 計が重要と考えられる。

Fig.8 Influence of addition of N on hardness of Fe⁻ 1.7~2.3%C⁻ 5%Cr⁻ 5%Mo⁻ 5%V alloy.

Fig.9 Distribution of dislocation around hard phases (alumina and eutectic Si) in Al-Si-Cu alloy which were solution treated at 773K for 10h.

5. 複合材料の疲労特性

複合材料において、Fig.4 のように引張りなどの 静的破壊試験を行う場合、強化相とマトリックス相 の界面強度が弱いときには最弱部となる強化相界 面(または黒鉛)からき裂が生成してしまう。しか しながら、切欠き疲労特性のように最弱部とは関係 ない動的破壊が生ずる場合は強化相は少し変わっ た影響を及ぼす。

Fig.10 Relation between fatigue limit stress and stress concentration factor for SiC particle reinforced AC4B alloy composites.

Fig.10 に SiC 粒子分散 Al 複合材料の切欠き回転曲 げ疲労試験の結果を示した 9。切欠きが無い平滑試 料(応力集中係数 K=1)においては、マトリック ス合金試料の疲労限度が 140MPa と最も高く、一 方,複合試料の値が 110~120MPa と低い値を示す。 また、き裂を発生させるための臨界応力すなわちき 裂発生応力(σ w1)および発生したき裂が進展して 試料を破壊させる臨界応力すなわちき裂進展限界 応力(σ w2)に明確な差はない。また、切欠き半径 が 0.1mm(応力集中係数 K=3.76)の場合、切欠 きの存在によりき裂発生は 55MPa と著しく低くな り、き裂進展限界応力についてもマトリックス試料

フジコー技報-tsukuru No.23(2015)

では応力集中係数が増加しても、き裂進展限界応力 はほとんど変化せず、9vol%SiC 試料で 95MPa、 31vol%SiC 試料で 105MPa を示し、特に 31vol%SiC 試料では平滑材の疲労限度(110MPa) とほぼ同等の値を示す結果が得られた。すなわち、 複合材料の切欠き回転曲げ疲労試験では、強化相の 分により、き裂が生成しても破断に至らない条件が 広かった。そこで、未複合試料および複合試料の疲 労破面を 45° 方向から観察し、その結果および破 壊の模式図を Fig.11 に示した。マトリックス合金 試料では、試験片内部方向へのき裂が比較的直線に 進展しており、また、き裂は切欠き底表面に発生し、 それらが連結して成長して破断に至っている。一方、 複合材では Fig.11 (c, d) に示すように、疲労き裂 は切欠き部以外の SiC 粒子凝集部からも多数発生 し、非常に凹凸の激しい複雑な破面を形成している。 この傾向は 31vol%SiC 試料の方が大きく、き裂の 進展方向の変化や分岐の頻度が高い。SiC 粒子凝集 部がき裂進展の抵抗となる理由は、今後詳細な調査 が必要であるが、SiC 粒子近傍では、上述するよう にマトリックス合金との熱膨張係数の差により導 入された高密度に存在する転位や、き裂周辺の加工 硬化および塑性誘起き裂閉口を助長し、さらに、き 裂が分岐することによるき裂先端での応力集中緩 和、得られる凹凸の激しい破面により生ずる破面粗 さ誘起き裂閉口等も加えて、き裂の伝ぱ、進展およ び結合を妨げ、き裂伝ば抵抗ひいてはき裂進展限界 応力を向上させたと考えられる。

Fig.11 Scanning electron micrographs of fatigue fracture surfaces for unreinforced AC4B alloy (a,b), and 31vol%SiC reinforced composites (c,d).

6. おわりに

ロール材を耐摩耗複合材料としてとらえ、強化相 とマトリックス相の材料設計について概説した。組 織学的にはマトリックスの特性向上から着目すべ きではあるが、マトリックスの特性改善が限界にき ているとすると、炭化物そのものの特性の向上、お よびマトリックス相との界面強度の向上が今後も 必要と考えられる。さらに表面粗さや熱応力、熱膨 張に起因する熱サイクル疲労など、より現場に直結 した問題についても総合的に評価・開発していく必 要があると考えられる。

参考文献

- 街街街街、小台市
 街台、
 街台、
 新田、
 1) 新造技術講座編集委員会編: "鋳造技術講座 4
 特殊铸鉄铸物",日刊工業新聞社(1970),
 p.253-260.
- F. Neumann, H. Schenck and W. Patterson: Giesserei, 47(1960), 25.
- 3) 松原 安宏,大城 桂作,松田 公扶:鋳物 48(1976)12,784-789.
- 4) 大城 桂作: 鋳物 66(1994)10, 764-771.
- 5) H. Miyahara, Sergio V. Bravo, K. Yamamoto and K. Ogi, ISIJ Int. 49(7) (2009),1075-1079.
- 6) 原 隆太郎,山本 昌宏,伊東 彦,上宮田 和 則,成田 一人,宮原 広郁,日本金属学会誌, 79(4)2015,169-175.
- Hua-Nan Liu and K. Ogi, J of Materials Science 34(1999) 5593-5599.
- H.G Kang, M. Kida, H. Miyahara and K. Ogi, Int. J. Cast Metal Research, 15(2002),1-7.
- H. Miyahara, Y. Maruno and K. Ogi, Materials Transactions, 46(5) (2005), 950-958.